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SUMMARY 
A general optimal conml approach employing the principles of calculus of variations has been developed to 
determine the best operating strategies for keeping the outlet pressure of gas transmission pipelines around a 
predetermined value while achieving reasonable energy consumption. The method exploits analytical tools of 
optimal control theory. A set of partial differential equations characterizing the dynamics of gas flow through a 
pipeline is directly used. The necessary conditions to minimize the specific performance index come from the 
infinitedimensional model. The optimization scheme has been tested on a pipeline subject to stepwise change in 
demand. 
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1. INTRODUCTION 

Sources of global primary energy consumption are oil, coal and natural gas in the order of their share in 
total consumption. The use of natural gas, which occupies third rank, is increasing rapidly and it is 
widely believed that natural gas will replace coal then oil by the end of the first or second decade of the 
2 1 st century. This will obviously bring about an increase in natural gas flow flowing through pipelines 
(which is the principal system for transporting gas) from suppliers to consumers and the construction of 
new transmission and distribution systems. 

The basic control element in a natural gas system is the compressor stations. The compressor stations 
in the transportation systems operate to compensate for pressure drop resulting from pipeline resistance. 
In practice, compressors are controlled on either outlet pressure or flow rate. While natural gas 
dispatchers are managing the system via compressors to keep it in the safe region, their first objective is 
to deliver gas to consumers at around a specified contract pressure. This is not an easy task, since true 
steady state flow (i.e. in equals out) rarely if ever exists in the real world. In actuality, customer usage is 
continually changing. Under this condition the flow rate is clearly unsteady and the control of this 
dynamic system requires much more rigorous perspective. The motivation of the present work is to 
investigate the optimal operating policies for the control of outlet pressure to accomplish the 
aforementioned objective. Minimizing the energy consumption is another objective. 

The goal of this study is to apply optimal control theory to develop the best operating strategies for 
keeping the outlet pressure of gas transmission pipelines around a predetemhed value while achieving 
reasonable energy consumption. In particular, the problem is to determine the control policy that 
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extremizes a specific performance index subject to the constraints imposed by the dynamics of the 
system, which is described by a model of isothermal transient gas flow through pipelines. 

Before constructing the model of natural gas systems, it is necessary to define the basic elements of 
such systems, namely nodes, pipes and compressors. Nodes are defined as the points where a node- 
connecting element (NCE; pipe or compressor) ends or where two or more NCEs join. Nodes are in fact 
delivery points, sources or just junctions. This study focuses on developing a systems science approach 
using optimal control theory for transient gas flow through pipelines. Therefore a source is considered 
as the discharge of a compressor which can supply gas at any desired pressure; it can also satisfy any 
flow demand. Since in this study it is assumed that no NCE (neither pipe nor compressor) exists ahead 
of a compressor, an explicit mathematical model for compressors is unnecessary. The inlet boundary 
condition for pipe flow is then the pressure equivalent to the discharge pressure of a compressor if one 
existed. The delivery point is characterized by the time-varying demand flow, i.e. the imposed outlet 
boundary condition. This flow must be supplied at around a specified contract pressure. 

The pipelines dominate the major dynamic characteristics of the system. The mathematical model of 
gas flow through pipelines is described by partial differential equations (PDEs) based upon the 
principles of conservation of mass and momentum, the equation of state, together with a relationship 
accounting for the deviation of the gas from ideal gas behaviour. To construct this model, it is assumed 
that the flow is isothermal, unidirectional and turbulent. Model development and solution techniques for 
this problem have been extensively studied for more than 30 years. Most authors agree on describing the 
dynamics of the system by 

B~ am ap __ + - - 0 ,  
Ag, ax at 

ap 1 am f;nlmlB2 -+--+ ax Ag, at 2DA2g,2P = O’ 

which are the equations of continuity and motion for transient gas flow respectively. 
The derivation of these fundamental equations is given in Reference 1. These hyperbolic PDEs are 

dependent on space x and time t and are non-linear. They require, for the problem to be well posed, one 
boundary condition to be defined at each end of a pipeline for the dependent variables, pressure P and 
mass flow rate m, and one initial condition. 

Equations (1) and (2) cannot be solved analytically because they are non-linear with respect to P and 
rn. An analytical solution must incorporate some simplification or assume some specific set of initial 
and boundary conditions. Thus the equations for transient flow must be solved by approximate 
techniques. 

Several methods to solve the transient gas flow problem for pipelines have appeared in the literature. 
Taylor et d2 and Streeter and Wylie3 have proposed the method of characteristics. Implicit finite 
difference procedures have been formulated by Guy: Streeter and Wylie’ and Wylie et aZ.’ Rachford 
and Dupont6 have presented a variational method using a Galerkin approximation technique. By fkrther 
simplifications and modifications Osiadacz’ has constructed a simpler diffusion-type PDE (i.e. a 
second-order parabolic PDE which is linear with respect to p); then he applies the finite difference 
method to solve the following resultant equation numerically: 

One of the earliest works on optimal control of gas pipelines is the study by Batey et d8 It seeks a 
reasonable control policy. The authors state some key rules for operation of the system with low energy 
consumption. Wong and Larson’ have used dynamic programming to solve small problems such as a 
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single compressor driving a single pipeline. Sood et af." have presented a different approach for a 
similar system. In their study the dynamics of gas flow is given by the set of equations 

Sood et af. have converted the original problem to one in which four simultaneous ordinary 
differential equations are to be solved. These equations have been solved using a Runge-Kutta 
method. For the minimization of the objective function which describes the energy consumption of a 
compressor, a gradient search method is employed. A hierarchical algorithm for the control of transient 
flow in a large, complex pipeline system has been described by Larson and Wismer. '' In that study the 
network is decomposed into subsystems, with the policy in each subsystem being determined by means 
of the Wong and Larson' scheme. Hierarchical systems theory is then used to co-ordinate these 
individual subsystem solutions to achieve control of the overall network. At the upper level they use a 
heuristic that fixes the suction pressure. A non-linear programming algorithm has been described by 
Osiadacz and Bell" for this problem as well. This algorithm minimizes at each time step the fuel 
consumption of the gas engines which drive the reciprocating compressors. Osiadacz and Bell13 have 
described a simplified algorithm for optimization of a large-scale gas network. The goal of their study is 
to minimize the fuel consumption of the gas engines at each compressor station. The pipeline dynamics 
is defined by equation (3). As they state, this formulation forces them to employ a volumetric flow rate 
which is averaged over the whole length of pipeline in every time intervals. In this method, at the first 
stage the pressures at all junctions and off-takes are calculated. Using the Crank-Nicolson procedure, 
the linearized equation is solved to compute the pressures along pipes. Next the flow through each 
compressor station is evaluated. Knowing the flow, suction and discharge pressure for each compressor, 
the objective function is minimized. After computing (if the algorithm intervenes) the optimal working 
parameters, the algorithm immediately moves to the next time level. It is clear that this approach is in 
fact a real time simulation. 

In 1988 Marques and M ~ r a r i ' ~  presented a quadratic programming optimizer built around a dynamic 
simulator. It is a general on-line optimization scheme for operation of a gas pipeline network. They 
apply a special case of the 'control vector parametrization' method called the 'black box' technique. The 
values of the gmhent of the objective function and the gradient of each constraint are obtained through 
simulations where each component of the NP (number of time steps in the operation horizon) control 
vector is perturbed. As a result, the computation of the gradients requires m C k, k = 1, . . . , NP, 
simulations where rn is the dunension of the control vector. It is obviously unfeasible in the matter of 
computation time and not necessarily exact. 

Among all the above works, none of them has attempted to tackle the control of a gas pipeline under 
the transient flow condition by exploiting analytical tools of variational calculus without further 
assumptions rather than the ones used before. In this study the mathematical model, i.e. the set of non- 
linear PDEs (equations (1) and (2)) describing isothermal and unidirectional gas flow through the 
pipeline, is treated as it is. These equations are considered as the state equations of the optimal control 
problem to be constructed in the following section. The necessary conditions on the state and control 
variables to minimize the objective function(s) are obtained by applying the principles of calculus of 
variations directly to the infinite-dimensional model without any discretizations. They yield an optimal 
control policy which is the inlet pressure of the pipeline, i.e. the discharge pressure of the compressor. 

The developed approach is examined in terms of controlling a pipeline subject to a sudden stepwise 
demand change. Three performance indices are applied to bring out the most suitable one. The optimal 
control policies for each case are presented. 



870 I. DURGUT AND K. LEBLEBICIOGLU 

-Time 
Figure 1. Schematic diagram of optimal control problem 

2. MATHEMATICAL MODEL 

In this optimal control study the dynamic simulator TRNFLOW is used. This simulator was developed 
by Rashidi et al.” and is built around the model presented by Wylie et al.’ 

Figure 1 summarizes the problem briefly: what should be the control policy for the inlet pressure Pi, 
so that the outlet pressure Pout is as close as possible to the contract pressure Pa and the time-varying 
demand mout is satisfied? 

State equations and performance indices 

The governing equations of transient gas flow through pipes in plainer form are 

i3P am 
- + a - = O  

am aP mlml o, - + b - +  c- = 
at ax P 

at ax 9 

when m = m(x, t )  is the mass flow rate and P = P(x, t )  is the gas pressure. 
Initially it is assumed that the flow is in a steady state condltion. Therefore mass flow rate at time zero, 

m(x, 0), is constant and known, mo. In addition, the initial pressure dlstribution P(x, 0) can be calculated 
using steady state flow relationships. Summarizing, 

The structure of the problem dictates the following boundary conditions: 

where 8 is the time-varying demand, assumed to be known, and j is the control input. 
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In this study three different performance indices are used to investigate their effects on the solution. 
These are 

w [P(L, t )  - P,J2 dt + 

All forms of objective functionals are defined so that at the extremum the outlet pressure will be as 
close as possible to and greater than the contact pressure (in Forml and Form3 only) and will not allow 
the use of excessive control. In the above equations, w and y are used to balance the weights of the 
criteria of control and outlet pressure on the functionals, T is the final time and L is the length of 
pipeline. Note that Form3 is obtained by combining Form1 and Form2 to observe the transition between 
the two forms. 

Optimal control pmblem 

One of the equations (12H14) is used as an objective function of the optimal control problem. The 
state equations describe the dynamics of the system and the imposed initial and boundary conditions 
along with the bounds on the control variable constitute the constraints. As a result, the investigated 
optimal control problem can be briefly represented as 

minimize J 
subject to equations (6) and (7) 

initial and b o u n w  conditions 

B E K  

Equations chamcterizing optimal variables 

In classical optimal control theory, such constrained problems are handled by the Lagrange multiplier 
approach.16 In this method the constraints (i.e. state equations) are incorporated into an objective 
functional to formulate an augmented objective functional through the use of Lagrange multipliers. In 
other words, the inner products of state equations with adjoint states (Lagrange multipliers) are added to 
the original objective functional to get an unconstrained optimal control problem (except for constraints 
on the control variables). In this study the augmented objective functional J, defined by introducing 
Lagrange multipliers I and p. For example, for Forml, 

Obviously, by equating the gradients of J, with respect to (w.r.t.) I and p to zero, one may deduce the 
state equations (6) and (7). 
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Owing to the initial and boundary conditions on pressure, the admissible perturbations q of pressure 
(i.e. P --f P + ~ q ,  where E is an arbitrary positive number) are set to zero for all x at t = 0 and for all t at 
x=O and are set free for allx at t =  Tand for all ta t  x = L .  By adrmssible q we mean that P+&q must 
satisfy the same conditions as P does (i.e. (P + E~)(x,  0) = Po(x) and (P + &q)(O, r) = /?(t). The derivative 
of J, w.r.t. P in the direction of q yields 

Then the gradient becomes 

m ' m l  O < t < T ,  O < x < L  
a1 ap 
at ax b - -  cp- 

P2 ' 
V,J,(P, m, /3) = - - - 

= A(x, T), 

= bp(L, 1) + osign [min(P(L, t )  - Pa. O)](P(L, t) - P&), 

0 < x < L 

0 < t < T. (18) 

Since this problem is unconstrained w.r.t. P, we may obtain one of the adjoint state equations by 
equating this gradient to zero. Thus 

aL ap mlml 
-++++p-=O,  O < t < T ,  O < X < L ,  
at ax P2 

L(x, r> = 0, 0 < x < L, (20) 
W 

p(L,  I )  = - -sign [min(P(L, t) - Pet, O)](P(L, t )  - Pa), 0 < t < T. b 

Similarly, for the other dependent variable m we get the second adjoint state equation 

aA ap 2cpm a--+-- -  ax at PZ sign(m) = 0, 0 < t < T.  0 < x < L, 

p(x, T) = 0, 0 < x < L, 

A(0, r) = 0, 0 < t < T. 

Equations (20)  and (23) are initial conditions for L and p respectively. It may have been already 
noticed that the adjoint state equations are known at the final time (i.e. they are set to zero for t =  T) 
while the state equations are known at the initial time. Therefore the adjoint state equations are solved 
backwards in time. Equations (21) and (24) specify the boundary conditions for the adjoint state 
variables in such a way that one adjoint state variable is fixed at each end of the pipeline. 

The problem is constrained w.r.t. the control variable B (i.e. the controls are assumed to lie in a convex 
set K ) .  Pontryagin's minimum principleI6 gives avariational inequality for the optimum control function 
B*(t): 
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It is necessary to modify the cost function in order to obtain V&(e m, B). The modified but 
equivalent cost function J, is given as 

Integration of the last term yields 
T T L 

0 0 
J , = . . . + 5 j 0  ' p2(f) dt + . . + 1 (bp(L, f)P(L, r )  - bp(0, r)B(r) - 1 b P E d x )  dt. (27) 

3. NUMERICAL DETERMINATION OF OPTIMAL CONTROL 

The variational approach summarized above leads to two-point non-linear initial boundary value 
problems that cannot be solved analyhcally to obtain the optimum control law. In the literature a number 
of numerical techniques (e.g steepest descent, variation of extremals, quasi-linearization) for 
determining optimal controls and trajectories are available. In this study the method of steepest 
descent16 (or gradients) is used for finding the optimal control of the pipeline problem. 

The algorithmic procedure we use to solve the optimal control of the pipe flow problem by the 
steepest descent method can be described in the following steps. 

1. Select a discrete approximation to the control policy &r), 0 < f < T Let the iteration index k= 0. 
2. Using the control policy, solve the state equations (apply the simulator TRNFLOW) from zero to 

T and store the resulting trajectories P(x, f) and m(x, f). 
3. With the known control and state variables, solve the adjoint state equations from T to zero 

(backwards in time). 
4. If the stopping criterion 

IlVSJll < E  

(where E is a predetermined positive constant) is not satisfied, generate a new control function 

Note that since the control is constrained, one cannot expect 11 Vp J 11 to approach zero as Bk goes 
to the optimum 8. Instead, several alternative stopping criteria can be utilized simultaneously. For 
instance, the algorithm may stop if a specified number of iterations is exceeded or 
II j?k+l(f) - B k ( f )  112 is sufficiently small. Furthermore, the function Bk+,(t) generated above is 
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Table I. Thermodynamic data of flowing gas 

Ambient temperature 60°F 
Gas gravity 0.55 
Pseudocritical pressure 672 psi(abs0lute) 
Pseudocritical temperature 345 O R  

not necessarily a member of K. Hence the actual /lk+l(r) should be obtained by taking the 
projection of &+l(t) onto the set K as 

5 .  Replace BAt) by pk+l(r)  and return to step 2. 

The step size a is determined by some onedimensional search techniques. The value used for the 
termination constant E is determined arbitrarily. 

4. RESULTS AND DISCUSSION 

The developed approach has been applied to a gas pipeline. The pipeline has a length of 2 x lo’ A and a 
flow diameter of 2 ft. The friction factor is constant (0.015) throughout the pipeline. The thermo- 
dynamic data of the flowing gas are given in Table I. 

In this example the system is subject to the demand history depicted in Figure 2. The outlet pressure 
should not be dropped below the contract pressure of 500 psi. It is known that after 2.5 h, demand will 
suddenly increase by one-third. This will last 1 h and the flow will then return to its former state. If the 
pipeline is controlled by a constant inlet pressure of 700 psi, the outlet pressure will decrease and then 
start to increase after the period of high demand (see Figure 3). As seen in Figure 3, the pipeline is 
pressurized more than enough except for the duration of high demand; nevertheless, the outlet pressure 
exceeds the lower limit of pressure for this period of time, which means clearly more energy 
consumption than necessary. 

The inlet pressure policies shown in Figures 4-1 1 are obtained by the algorithm described above. 
Control histories are denoted by full curves. These figures also show the pressures at the delivery points 
(outlet pressures) by dotted curves. 

400 

t 

0 100 200 300 400 

TI, minutes 

Figure 2. Demand history at outlet 
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Figure 3. Constant control (inlet p~essurr) and outlet pressure 

Figure 4. Control obtained by using Forml ( y  = o = 1). initial guess P(0, r )  = 600 psi, and outlet pressure 
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Figure 5. Control obtained by using Forml ( y  = o = l),  initial guess 4 0 ,  r )  = 800 psi, and outlet pressure 
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Figure 6. Control obtained by using Form2 ( y  = o = l), initial guess P(0, r )  = 600 psi, and outlet pressure 
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Figure 7. Control obtained by using Form2 (7 = o = I ) ,  initial guess P(0, r) = 800 psi, and outlet pressure 
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Figure 8. Control obtained by using Form3 ( y  = 01 = 0.25, w2 = 0.75). initial guess P(0, r) = 800 psi, and outlet pressure 
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Figure 9. Control obtained by using Form3 (y = o1 = 0.40, w2 = 0.60). initial guess 00 ,  f )  = 800 psi, and outlet pressure 
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Figure 10. Control obtained by using Form3 ( y  = W I  = 0.70, w2 = 0.30), initial guess P(0, f )  = 800 psi, and outlet pressure 
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Figure 1 I .  Control obtained by using Form3 (y = lo-‘, O, = 0.90.02 = 0.10). initial guess P(0, t)  = 800 psi, and outlet pressure 

Table 11. Initial and final costs for two different initial cases 

Initial control Initial control 

Initial Final Initial Final 

P(0, t )  = 600 psi P(0, t )  = 800 psi 

Forml 2.04 x lo8 2.04 x lo8 6.91 x 10’ 6.05 x lo5 
Form;! 2.04 x 108 5-74 x 10’ 2.40 x lo8 5-75 x 105 

Table 111. Initial and final costs for four different combinations of weights w1 and w2 

Wl =0.25, 0 2  =O.75 W I  = 0.40, wz = 0.60 W I  = 0.70, 02 = 0.30 01 = 0.95, W Z  = 0.05 

Initial Final Initial Final Initial Final Initial Final 

Forml 1.81 x 10’ 5.94 x 10’ 1.45 x 10’ 8.68 x lo’ 7.26 x lo7 6.86 x lo6 2.47 x lo7 4.01 x lo6 

The results of this model must be considered with respect to the parameters y and o (or w1 and 02) 
and the form of the cost functions. If any or all of these parameters and the form of the cost functions 
change, then different results will of course be obtained. 

For the cost function types of Foml and Form2 the algorithm is initiated from two different initial 
guesses, namely P(0, t )  = 600 psi and P(0, t )  = 800 psi for 0 -c t < 1: Using Forml, the algorithm does 
not progress if the initial guess is P(0, t )  = 600 psi (Figure 4). Using the higher pressure (800 psi) as an 
initial starting point yields a better result (Figure 5).  These results reveal that the model employing the 
cost function with the ‘min’ term fails. On the other hand, the model with Form2 provides the best 
optimal control regardless of the initial constant control (see Figures 6 and 7). These two figures 
demonstrate the superior performance of this control in keeping the outlet pressure around the contract 
pressure. h t i a l  and final values of the performance index are given in Table I1 for each case. 
Consequently, the results give an idea about which form is suitable. 

Form3 throws light on h s  situation. It is a combination of the previous two forms. The weight of 
terms with and without ‘min’ is adjusted by oI and 0 2  respectively. For this case the results are 
presented in Figures 8- 1 1 and Table 111. As can be understood from these results, decreasing the weight 
of the term with ‘min’ (0,) creates an improvement in the final solution. 
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5.  CONCLUSIONS 

A general optimal control approach has been proposed for the control of a gas pipeline. The developed 
model tries to find the optimal control policy while keeping the system in a desired state. 

The present work has the main advantage that the descent direction in which the search for the 
minimum progresses is obtained directly by an analytical approach. It is certainly superior to any 
numerical approach. Therefore the computation time is shorter than the other methods. 

Investigations into the effect of cost function type show the suitability of an equality constraint on the 
outlet pressure rather than a greater than or equality constraint. 

Having the time constant characteristic, the control is devised so that future events (peaks in demand) 
are taken into account. 

Work is in progress to deal with the control of gas networks. 

APPENDIX: N O M E N C L A W  

a, b, c 
A 
B 
D 

gc 
J 
K 
L 
m 
P 
4 
t 
T 

f 

V 

X 

constants 
cross-sectional area of pipe 
isothermal speed of sound in gas 
diameter of pipe 
fiction factor 
conversion factor for gravity 
performance index 
set of admissible control 
length of pipe 
mass flow rate 
gas pressure 
volumetric flow rate 
time 
final time 
average velocity of gas 
distance co-ordinate 

Greek letters 

Subscripts 

step size 
control function 
weight factors 
a positive number, convergence parameter 
admissible perturbation 
function representing time-varying demand 
Lagrange multipliers 
density of gas 
Dirac Delta function 

a augmented 
ct contract 
in inlet 
k iteration index 
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ma modified augmented 
min minimum 
max maximum 
out outlet 

Superscripts 
* optimal value 
- limit from below 
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